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From the Lagrangian formalism for the t-J model previously developed, renormalized
magnetic properties in weakly doped antiferromagnets can be evaluated. The renormal-
ization effects essentially appear because of the interaction of particle-hole with the
spin wave. For small concentration of holes the self-energies are computed. Taking an
approximate form for the particle spectral function, the cuasiparticle peak and the inco-
herent continuum region are analyzed in order to evaluate the softening and the damping
in the spin excitations of antiferromagnets weakly doped. The results can be confronted
with previous one obtained by means of the Hamiltonian t-J model in the slave-fermion
Schwinger boson representation.
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operators.

1. INTRODUCTION

The actual interest in the study of the magnetic properties in some weakly
doped antiferromagnets is due to their connection with high temperature supercon-
ductivity. Among others results, the experiments have shown important softening
and damping in the spin excitations (Haydenet al., 1991, 1996) as well as an
increase in the transversal susceptibility (Nakanoet al., 1994; Ohsugiet al., 1997;
Songet al., 1993) when interaction between holes and spin waves are considered.
The undoped configuration is an antiferromagnetic insulator. Doping produces
holes (Heuseret al., 1998; Mathuret al., 1998; Schr¨oderet al., 1998; Stockert
et al., 1998; Sullowet al., 1999a,b; Tjenget al., 1997) and the long-range antifer-
romagnetic order rapidly disappears at low doping, and superconductivity arises
upon further doping. The motion of holes strongly interacting with the spin array
generates a renormalization of the magnetic properties. This well-known effect
is usually studied from thet–J Hamiltonian model (Igarashi and Fulde, 1992;
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Izyumov, 1997; Martinez and Horsch, 1991; Pimentelet al., 1999). In the current
literarure, thet–J Hamiltonian model is written in the slave-fermion represen-
tation for the case of an antiferromagnetic matrix. Considering the model in a
Schwinger boson representation, hole motion is treated within a self-consistent
Born approximation (Kaneet al., 1990; Liu and Manousakis, 1992; Schmitt-Rink
et al., 1988; Sullowet al., 1999a,b); that is, the self-consistent equation for the
hole self-energy is solved numerically and so, by using the Dyson equation, the
hole dressed propagator can be found. This method has been applied considering
different approaches for the propagation of a single hole in a two dimensional
antiferromagnet. Next the study of hole motion has been extended for a finite con-
centration of holes (Igarashi and Fulde, 1992; Kyung and Mukhim, 1997; Plakida
et al., 1994).

In the present work starting from the renormalized first-order Lagrangian
formalism for thet–J model previously developed (Foussatset al., 2000 a,b,
2002) magnetic properties for weakly doped antiferromagnets are evaluated. The
results are in agreement with available experimental data and constitute a strong
proof on the validity of our Lagrangian model.

The paper is organized as follows. In Section 2, the propagators and vertices
that result from the Lagrangian model are analyzed. In Section 3, the different
contributions to the self-energies for both hole and spin-wave fields are computed
in order to obtain dressed propagators. In section 4, magnetic properties in antifer-
romagnets weakly doped are evaluated. In particular the softening and the damping
in the spin excitations are analyzed.

2. LAGRANGIAN, PROPAGATORS AND VERTICES FOR
ANTIFERROMAGNETIC CONFIGURATION

The starting point is to consider the renormalized Lagrangian formalism de-
veloped by Foussatset al. (2002). Let us assume that we are close to an undoped
regime where the system is an antiferromagnetic insulator. Under this condition
there is a small number of holes and it can be assumed that the hole density
ρi = 〈ρi 〉 = constant. For a given value of the chemical potentialµ, the constant
value of the hole density must be determined by consistency.

As it is usual in the antiferromagnetic configuration a rotation of spins on
the second sublattice by 180◦ about theS1 axis must be performed (Manousakis,
1991),

Sj 1→ Sj 1, Sj 2→−Sj 2, Sj 3→−Sj 3, 9 jσ → 9 j σ̄ , (2.1)

whereσ → σ̄ implies±→ ∓.
From now on, the system fluctuating around an antiferromagnetic state (Ji j <

0) is assumed. In such conditions, the components of the real vector field S are
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close to be the spin variables, and so the vector S is written

S= (0, 0,s′)+ (S̃1, S̃2, S̃3) (2.2)

where S̃1, S̃2, S̃3 are the fluctuations. In order to simplify notation hereafter the
tilde over the fluctuations is omitted.

This canonical tranformation (2.1) changes the antiferromagnetic configu-
ration into a ferromagnetic one with all spins up, and so it is not necessary to
distinguish between sublattices. However the effective Lagrangian is not invariant
under such transformation, because the noninvariance of thet–J Hamiltonian.

Consequently, by following Foussats (2002), the effective Lagrangian for the
t–J model is written in terms of four bosonic-field components (S1, S2, S3, λ) and
two fermionic-field components (9∗−,9−).

Once the transformation to the Euclidean space is carried out, the effective
Lagrangian in terms of the fluctuations (2.2) takes the form

L E
eff =

i

2s
(1− ρ)

∑
i

Si 1Ṡi 2− Si 2Ṡi 1

s+ s′

[
1+

∑
n=1

(−1)n
(

Si 3

s+ s′

)n
]

− s

s+ s′
∑

i

(
9̇∗i−9i− + 9̇i−9∗i−

) [
1+

∑
n=1

(−1)n
(

Si 3

s+ s′

)n
]

− 2sµ

s+ s′
∑

i

9∗i−9i−

[
1+

∑
n=1

(−1)n
(

Si 3

s+ s′

)n
]

+ 1

(s+ s′)

∑
i , j

tij9i−9∗j− [Si 1− i Si 2+ Sj 1+ i Sj 2]

+ 1

(s+ s′)

∑
i , j

tij9i−9∗j−

[
(Si 1− i Si 2)

(∑
n=1

(−1)n
(

Si 3

s+ s′

)n
)

+ (Sj 1+ i Sj 2)

(∑
n=1

(−1)n
(

Si 3

s+ s′

)n
)]

− 1

8s2
J ′
∑
i , I

[
Si 1S(i+I )1− Si 2S(i+I )2− Si 3S(i+I )3+ S2

i 1+ S2
i 2+ S2

i 3

]
− 2s′

∑
i

λi Si 3−
∑

i

λi
[
S2

i 1+ S2
i 2+ S2

i 3

]
, (2.3)

The free propagator of the boson fieldVa = (S1, S2, S3, λ) is an Hermitian
nonsingular 4× 4 dimensional matrix. From the effective Lagrangian (2.3) the
expression for the free-boson propagator or spin-wave propagator in the Fourier
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space results

Dab
(0)(q, ωn) =

− J ′z
8 (s+ s′)2 (1− γq)

ω2
n + ω2

q

(1+ ρ)2 s(s+ s′)
ωn

ω2
n + ω2

q

(1+ ρ) 0 0

−s(s+ s′)
ωn

ω2
n + ω2

q

(1+ ρ) − J ′z
8

(s+ s′)2 (1+ γq)

ω2
n + ω2

q

(1+ ρ)2 0 0

0 0 0 − 1

2s′

0 0 − 1

2s′
J ′z(1− γq)

32s2s′2


(2.4)

In Eq. (2.4),q andωn are respectively the momentum and the Matsubara frequency
of the boson field.

Moreover, in Eq. (2.4) the frequencyωq is defined by

ωq = z J′

8s
(s+ s′)(1+ ρ)

√
1− γ 2

q , (2.5)

where J ′ = J(1− ρ)2 < 0, z is the number of first nearest-neighbor sites and
zγq =

∑
Î exp(iq · I ), whereI is the lattice vector.

From the above equations it can be seen that the spatial dimension of the
underlying lattice and the physics depend on the parametersz andγq, though our
Lagrangian formalism is dimensional-independent.

On the other hand the antiferromagnetic free-magnon propagator is defined
by

D+−(0) =
(
D−+(0)

)∗ = 〈T S+(τ )S−(0)〉 = 1

2

(
D11

(0)+ D22
(0)− i

(
D12

(0)− D21
(0)

))
. (2.6)

And from Eq. (2.4) it results

D+−(0) (q, ωn) = −s(s+ s′)(1+ ρ)

(
J ′z(s+ s′)

8s
(1+ ρ)+ iωn

)
1

ω2
q + ω2

n

. (2.7)

As well known, from the antiferromagnetic magnon propagatorD+−(0) (q, ωn),
the magnon spectral function is defined by

A ≡ − 1

π
lim
ε→0

Im D+−(0) (ω + i ε)

= s(s+ s′)(1+ ρ) [ A+(q) δ(ω − ωq)+ A−(q) δ(ω + ωq)], (2.8)

where

A± = 1

2

1± 1√
1− γ 2

q

 . (2.9)
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We note that the expression (2.8) for the antiferromagnetic magnon spec-
tral function is the generalization to that given in Manousakis (1991) when the
hole densityρ 6= 0. Equation (2.8) that generalizes the well-known antiferromag-
netic magnon spectral function, really checks the validity of the free-propagator
expression (2.7) for finite values of the hole density.

At this point it is convenient to apply the Bogoliubov–Valatin transformation
for the spin variables, i.e.,

S+ = 1√
2

(
S1

uq + vq
+ i

S2

uq − vq

)
, (2.10a)

S− = 1√
2

(
S1

uq + vq
− i

S2

uq − vq

)
, (2.10b)

where

uq =

√√√√√√s(s+ s′)(1+ ρ)

1+
√

(1− γ 2
q )

2
√

(1− γ 2
q )

 , (2.11a)

νq = −(signγq)

√√√√√√s(s+ s′)(1+ ρ)

1−
√

(1− γ 2
q )

2
√

(1− γ 2
q )

 . (2.11b)

The Bogoliubov–Valatin transformation is carried out to simplify the calcu-
lations. Once the Bogoliubov–Valatin transformation was given, the free-boson
propagator components read

D+−(0) (q, ωn) = (D−+(0) )∗(q, ωn) = − 1

ωq − iωn
(2.12a)

D++(0) (q, ωn) = D−−(0) (q, ωn) = 0 (2.12b)

D34
(0)(q, ωn) = D43

(0)(q, ωn) = − 1

2s′
(2.12c)

D44
(0)(q, ωn) = J ′z

32(ss′)2
(1− γq) (2.12d)

On the other hand, as shown in Foussats (2002), the main problem in the anti-
ferromagnetic configuration is to give the mechanism for the fermion propagation.
From the Eq. (2.3), the bilinear fermionic part reads

L F =
∑
k,νn

9∗−(k, νn) G−1
0 9− (k, νn), (2.13)
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where we have named

G−1
0 = −

2s

s+ s′
(i νn + µ). (2.14)

The inverse of this scalar function given by

G0 = −s+ s′

2s

1

i νn + µ , (2.15)

is a (nonpropagating) functional that depends only on the Matsubara frequency
νn. Later on, the prescriptions for the propagation of the fermionic modes will be
given.

Here we write only the three-leg and four-leg vertices corresponding to the
interaction between spin waves, and the interaction between holes and spin waves.
Looking at the Lagrangian (2.3), it can be seen that these interaction vertices
respectively can be written

U+ = −
√

2

s+ s′
[vkεk + uk−qεk−q], (2.16a)

U− = −
√

2

s+ s′
[ukεk + vk−qεk−q], (2.16b)

U3 = − s

(s+ s′)2
[i (vn + v′n)+ 2µ], (2.16c)

U+3 =
√

2

(s+ s′)2
[vkεk + uk−qεk−q], (2.16d)

U−3 =
√

2

(s+ s′)2
[ukεk + vk−qεk−q], (2.16e)

U33 = s

(s+ s′)3
[i (vn + v′n)+ 2µ], (2.16f)

and the other components vanish.
The above equation definesεk = −tzγk.
The three-boson interaction vertexFabc is written

Fabc= −i
(1− ρ)

2s(s+ s′)2
(ω2− ω1) [(uq1 vq2− uq2 vq1)(δ+a δ

+
b − δ−a δ−b )

+ (uq1 uq2− vq1 vq2)(δ+a δ
−
b − δ−a δ+b )]δ3

c

− 2[(uq1 vq2+ uq2 vq1)(δ+a δ
+
b + δ−a δ−b )

+ (uq1 uq2+ vq1 vq2)(δ+a δ
−
b + δ−a δ+b )+ δ3

aδ
3
b]δ4

c

+ ciclic rotations of indices, (2.17)
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and the analogous expression for the four-boson interaction vertex namedFabcd

(see Foussatset al., 2002).
This diagrammatics allow to compute the one-loop contribution to the per-

turbative development in the componentS3 of the fluctuations.

3. SELF-ENERGIES GENERATED BY THE INTERACTION BETWEEN
SPIN WAVES AND HOLES—DRESSED PROPAGATORS

We begin studying the fermion self-energy. The usual way to solve the propa-
gation of fermions (particle-hole propagation) is by means of the Dyson equation.
As known, the Dyson theorem allows to compute the inverse of the corrected
fermion propagator in terms of the free-fermion propagator and the self-energy.
Therefore the propagator

G(k, vn) = [G−1
0 (vn)−

∑
(k, vn)

]−1
, (3.1)

can be evaluated in a straightforward way within the self-consistent Born ap-
proximation (SCBA) framework (see for instance Martinez and Horsch, 1991;
Schmitt-Rinket al., 1988).

Once an appropriate self-energy function
∑

(k, ivn) is found, and after the
analytic continuationivn = v + i δ is done, the propagatorG(k, v) remains well
defined, and so it is possible to compute numerically the spectral function defined
by B(k, v) = − 1

π
limδ→0 G(k, v + i δ).

On the other hand, it is easy to show that in the one-loop computation of the
fermion self-energy

∑
(k, ivn) only one contribution coming from the three-leg

vertexUa is significant. Because of the form of the free-boson propagator (2.4)
the part coming from the four-leg vertexUab vanishes.

Therefore the self-energy
∑

(k, ivn) is given by

∑
(k, ivn) = 1

Ns

∑
ω,q

Ua Dba
(0)(ω, q) Ub G(v + ω, k+ q)

=
∑

q

( f (k, q)+ ω g(k, q))
∑
ω

G(v + ω, k+ q)

ω2+ ω2
q

, (3.2)

where

f (k, q) = J ′z(1+ ρ)2

4Ns

(
ε2

k + ε2
k′ − 2γq εk εk′

)
, (3.3)

g(k, q) = −2is(1+ ρ)

(s+ s′)Ns

(
ε2

k′ − ε2
k

)
. (3.4)
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Fig. 1.

By using standard techniques, the following expression for the fermionic
self-energy at zero temperature is found∑

(k, ivn) = (1+ ρ)

2Ns
t2 z2

∑
q

×

 (signγq) γk

√[
1−

√(
1− γ 2

q

)]− γk+q

√[
1+

√(
1− γ 2

q

)]
√(

1− γ 2
q

)


2

× s(s+ s′)(1+ ρ)

ivn − ωq − µ−
∑

(k+ q, ivn − ωq)
, (3.5)

where the relationεk = −z tγk was used.
Now by using Eq. (2.11), the Eq. (3.2) takes the final form∑

(k, ivn) = (1+ ρ)

2Ns
t2 z2

∑
q

(uq γk+q + vq γk)2

ivn − ωq − µ−
∑

(k+ q, ivn − ωq)
. (3.6)

The expression (3.6) is useful in the strong coupling case (t > J ). Moreover,
in order to describe a metallic phase where the holes move coherently on the
lattice, it is necessary to solve the self-consistent Eq. (3.6), which must be carried
out numerically.

Once an appropriate self-energy function
∑

(k, ivn) is found, the propagator
G(k, v) remains well defined, and so it is possible to compute numerically the
spectral functionB(k, v).

It can be seen that the Eq. (3.6) is the generalization for finite values of holes
to the equivalent equation coming from the spin-polaron theories (see Martinez
and Horsch, 1991; Schmitt-Rinket al., 1988). In fact this is a strong proof of the

Fig. 2.
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correctness of the quantum procedure developed in thet–J Lagrangian
model.

On the other hand, the renormalized spin-wave propagators can be obtained
by means of the Dyson equation (D)−1

ab = (D)−1
(0)ab−

∏
ab. By looking at the dia-

grammatics it can be seen that the boson self-energy
∏

ab is given by the sum of
the contributions of all the following one-loop diagrams

(1)∏
ab

(ω, q) = (−1)
1

Ns

∑
v,k

Ua G(k, vn) Ub G(k− q, vn − ωn). (3.7a)

(2)∏
ab

(ω, q) = (−1)
1

2Ns

∑
v,k

Uab G(k, vn), (3.7b)

and
(3)∏
ab

(ω, q) = 1

2Ns

∑
ω′,q′

Fadc(ω, ω′) Dde
(0)(ω

′, q′) Febf(ω, ω′)

× Dfc
(0)(ω

′ − ω, q′ − q). (3.7c)

(4)∏
ab

(ω, q) = 1

2Ns

∑
ω′,q′

Facb(ω) Dcd
(0) (0) Fdef(ω

′) Def
(0)(ω

′, q′). (3.7d)

(5)∏
ab

(ω, q) = 1

2Ns

∑
ω′,q′

Facdb(ω, ω′) Dcd
(0) (ω′, q′). (3.7e)

whereNs is the lattice number of sites, and the symmetry factors have been taken
into account. In the above diagrams the line represents fermions and the doted and
dashed line represents bosons.

In the antiferromagnetic configuration the diagrams containing one fermionic
loop complicate the boson self-energy expression. In this case the associated ma-
trix

∏
ab(q, ωn) contains contributions to the

∏
+3(q, ωn) and

∏
−3(q, ωn) com-

ponents, given rise to longitudinal spin-wave modes. Of course, in the regime we
are working, these contributions are small corrections to the transversal spin-wave
components. But it is important to note that the Lagrangian model (2.3) takes into
account all the possible interactions without any approximation.

With the aim to confront our results with those obtained by means of thet–J
Hamiltonian model in the slave-fermion Schwinger boson representation we only
retain terms of ordert2. These terms coming from the diagram of Fig. 1(a) produce
the renormalization in the transversal spin wave modes given rise to a significant
softening of the spin excitations.

The small corrections produced by the longitudinal contributions of the di-
agrams of Fig. 1(b), as well as the contributions coming from the diagrams
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containing pure bosonic vertices of Fig. 2, will be evaluated in a future
paper.

4. MAGNETIC PROPERTIES IN ANTIFERROMAGNETS
WEAKLY DOPED

As was mentioned above the propagation of a single hole in a two dimensional
antiferromagnets has been studied in the framework of thet–J Hamiltonian model
in a Schwinger boson representation using the (SCBA) (see for instance Kane
et al., 1990; Liu and Manousakis, 1992; Martinez and Horsch, 1991; Pimentel
et al., 1999; Schmitt-Rinket al., 1988). Later on, this approach was extended to
the case of finite concentration of holes (see Igarashi and Fulde, 1992; Izyumov,
1997; Kyung and Mukhin, 1997; Plakidaet al., 1994). In both situations when the
density of holes is small, it is well known that several results are essentially the
same.

In particular, because of the strong coupling between holes and spin exci-
tations a hole propagates coherently having a quasiparticle band-width∼J and
energy minima at momentaki = (±π/2,±π/2). When the spectral density is com-
puted it shows a cuasiparticle peak of intensity∼(J/t)2/3, and a broad incoherent
multiple spin-wave continuum located at higher energies of width∼2zt. Now, from
our model we must study the effect of the coherent and the incoherent motion of
holes interacting with spin wave by computing the softening and damping of the
spin excitations.

When the (SCBA) approach is used we can suppose that the hole spectral
functionB(k, v) is composed by a coherent part corresponding to the quasiparticle
peak plus an incoherent continuum. So, the spectral function takes the approximate
form (Pimentelet al., 1999)

B(k, v) = [Bcoh(k, v)+ Binc(k, v)]F±(k)θ (±v) (4.1)

where the Fermi surfaceF−(k) =∑4
i=1 θ (kF− |k− ki |), F+k (k) = 1− F−(k),

andkF is the Fermi momentum.
In Eq. (4.1) the coherent and incoherent parts respectively read

Bcoh(k, v) = Zkδ(v − εk + µ), (4.2a)

Binc(k, v) = hθ (|v| − z J/2)θ (2zt+ z J/2− |v|). (4.2b)

whereZk is the intensity of the quasiparticle state, and so the height of the con-
tinuum region is∼(1− Zk)/2zt satisfiying the sum rule

∫
B(k, v)dv = 1. The

energies are measured with respect to the Fermi level, and near the minima atki

the quasiparticle dispersion in Eq. (4.2a) is writtenεk = εmin+ (k− ki )2/2m with
an effective massm.
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In order to determine the renormalized spin-wave energyωq we only take
into account contributions of ordert2 that are those coming from the self-energy∏

ab(q, ω) defined in Eq. (3.9a). Moreover, from this equation and the expresion
(4.1) it can be seen that the self-energy

∏
ab(q, ω) presents three contributions∏

ab(q, ω)coh,coh,
∏

ab(q, ω)coh,incand
∏

ab(q, ω)inc,inc.
The dressed hole propagator (3.1) in terms of the spectral function is written

G(k, ivn) = 1

2π

∫ +∞
−∞

dv′
B(k, v′)
ivn − v′

(4.3)

and so the four components of the self-energy
∏

ab(a, b = ±) of Fig. 1(a) diagram
reads∏

ab
= (−1)

1

Ns

∑
k,vn

Ua(k, q, νnωn)Ub(k, q, νnωn)
∫ +∞
−∞

dν ′

(2π )

∫ +∞
−∞

dν ′′

(2π )

× B(k, ν ′)
i νn − ν ′

B(k− q, ν ′′)
i (νn − ωn)− ν ′′ (4.4)

The self-energy (4.4) can be computed straightforward by using the expres-
sion (4.1) for the spectral function. Once this is done and the components of the
dressed propagatorDab(q, ω) are found, the renormalized spin-wave energyωq is
determined by the poles of such propagator, i.e, by the condition[(

D−+0

)−1−
∏+− ][(

D+−0

)−1−
∏−+ ]−∏++∏−− = 0. (4.5)

As well known, by analizing the region whereIm
∏

(q, ω) = 0, it is possible to
obtain the softening in the frequencyωq of the antiferromagnetic magnon. For the
renormalized frequency we found the following expression:

ωR
q = ωq + Re

∏+− = ωq[1− r (q)], (4.6)

where the three parts coherent–coherent, coherent–incoherent, and incoherent–
incoherent of the self-energy

∏+− give contributions to the functionr (q). Of
course the functionr (q) defined in Eq. (4.6) in two dimension is the same to that
written in Pimentelet al., (1999).

Analogously, in order to evaluate the damping in the spin excitations we must
study the region whereIm

∏
(q, ω) 6= 0, obtaining an inverse lifetime given by

0q = −2Im
∏+−

(q, ωq), (4.7)

where the contribution to the damping is determined only by the coherent motion
of holes, i.e,Im

∏+−
coh,coh.

Moreover, as well known for finite values of the hole densityρ, the renor-
malization factorZc < 1 giving rise to a reduction of the spin-wave velocity.

Looking at the Hamiltoniant–J model in the Schwinger boson representation
(Pimentelet al., 1999), we can conclude that the renormalization of the magnetic
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properties produced by the interaction vertex of this model, is precisely the same
renormalization produced by the Lagrangian diagrammatics by taking into account
only the terms proportional tot2.

As was said above to compute the renormalization effects, only strong con-
tributions of ordert2 have been considered, because in the present regime all the
remaining contributions represent small corrections. The Lagrangian model in-
cludes other small corrections, particularly longitudinal contributions which are
not present in the Hamiltoniant–J model.

So, under this conditions we can conclude that the Lagrangian model and
the Hamiltoniant–J model in the Schwinger boson representation gives the same
results for the softening and damping of the spin excitations.

The same conclusion is valid for the transverse spin susceptibilityχ⊥ =
χ⊥(q = 0,ω = 0) which in terms of the renormalized spin-wave propagator is

given by χ⊥ = − limq→0

[
(1−γq)
(1+γq)

]1/2
[Re D+−(q, 0)+ Re D++(q, 0)]. Finally,

from the above expression the transverse spin susceptibility is written in terms
of self-energy components as follows

χ⊥ = limq→0
1

z J(1+ γq)

[
1− 2

z J
(
1− γ 2

q

)1/2 [Re
∏+−

(q, 0)

+ Re
∏++

(q, 0)
]]

, (4.8)

where in the limitq→ 0 only the coherent parts of the self-energy components
gives contributions. The increasing of the transverse susceptibility is because from
the calculations results a renormalization factorZχ > 1.

The above results constitute a strong test about the correctness of our
Lagrangian formalism.

5. CONCLUSIONS

The first-order Lagrangian formalism for thet–J model proposed and de-
veloped in the context of the path-integral formalism (Foussatset al., 2000 a,b,
2002), has been checked by analyzing and computing several magnetic properties
in ferromagnets (see Foussatset al., 2002), as well as in antiferromagnets.

The remarkable feature of our approach is that the HubbardX-operators are
used as field variables allowing to describe without any decoupling assumption,
spin and charge fluctuations on the atomic lattice site.

As it was showed in Foussatset al. (2002) (Eq. (6.21) for ferromagnets, our
approach gives response to the thermal softening of the ferromagnetic magnon
frequency, and the expression we found is the generalization for different from
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zero hole density to that obtained by means of the non-linear spin wave model
(Mattis, 1981).

It is important to note that our model accounts for the softening effect when
only oneloop computations—without any vertex correction—is considered. We
think this fact is important because it simplifies the computation. As it can be
seen, in the framework of nonlinear spin-wave model, the softening of the magnon
frequency is obtained by including vertex corrections.

As it was shown in the present paper our diagrammatics accounts correctly
for the renormalization of magnetic properties for weakly doped antiferromag-
nets. The results are those obtained by means of thet–J Hamiltonian model in a
Schwinger boson representation, when only contributions oft2 order (transversal
components) are taking into account. Besides, the diagrammatics of the Lagrangian
model contains pure spin-wave interaction vertices as well as different from zero
longitudinal components in the self-energy giving rise to small corrections in the
dressed spin-wave propagator which can be appropriately computed.
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